电熨斗厂家
免费服务热线

Free service

hotline

010-00000000
电熨斗厂家
热门搜索:
技术资讯
当前位置:首页 > 技术资讯

每天5吨一体化污水处理设备价格《资讯》

发布时间:2020-08-20 18:05:04 阅读: 来源:电熨斗厂家

每天5吨一体化污水处理设备价格

核心提示:每天5吨一体化污水处理设备价格,主导产品有:一体化污水处理成套设备、化学法二氧化氯发生器、全自动二氧化氯发生器、经济型二氧化氯发生器等每天5吨一体化污水处理设备价格

主导产品有:一体化污水处理成套设备、化学法二氧化氯发生器、全自动二氧化氯发生器、经济型二氧化氯发生器等水力负荷对不同系统污染物去除影响  (1)CODCr去除效果水力负荷为0.1~0.3m3/(m2·d)时,随着水力负荷的增加,4组工艺内CODCr的去除率均明显降低,这是因为水力负荷越大,污水在各个系统中的停留时间越短,影响微生物对CODCr的降解效果。对于1号水培蔬菜系统,CODCr的去除率在不同水力负荷下均为最小,这可能是因为水培蔬菜系统有效水深较浅,并且系统内不填充基质,所以水培蔬菜根系中微生物的量相对潜流湿地较少,而进水为经过脉冲滤池生物处理后的出水,水中CODCr主要为小分子溶解性有机物,CODCr的去除主要依靠微生物的降解和转化作用,所以潜流湿地单元可发挥较好的作用。  随着水力负荷增大,3号系统对CODCr的去除率由58.2%下降到39.5%,4号系统对CODCr的去除率由50.3%下降到34.6%。其中3号系统相对较好,可能是因为4号系统首先流经潜流湿地,流经后段水培蔬菜系统中CODCr含量减少,溶解氧浓度低(0.3~2.1 mg/L),导致后段水培蔬菜生长状况不好,部分未长出发达的根系或出现烂根现象,减弱了水培蔬菜根系中微生物的生长繁殖和CODCr降解作用。2号系统、3号系统与4号系统对CODCr的去除负荷均随水力负荷的增大而增加,去除负荷增大趋势减缓。这是因为水培蔬菜系统根系较浅,随水力负荷增加,水流对根系冲刷加强,不利于根系中微生物的生长繁殖。

(2)TN去除效果  4种系统对TN的去除率如图3(a)所示,去除率均随着水力负荷增加而下降。在相同的水力负荷条件下,2号系统对TN的去除率最大,这是由于进水为生物接触氧化池的出水,氮的形态以width=46,height=15,dpi=110为主,潜流湿地内有效水深较深,为微生物进行反硝化脱氮创造了较好的缺氧环境,所以该系统对TN的去除率最大。水力负荷为0.1 m3/(m2·d)时,4号系统对TN的去除率远低于其他3种系统,可能是在4号系统中,污水先经过水深较深的潜流湿地,流入后段水培蔬菜系统时水中溶解氧浓度较低(0.3~2.1 mg/L),影响到空心菜的正常生长和根系微生物生存环境,使植物吸收与微生物去除作用减弱。随着水力负荷增大,1号系统中TN的去除率从76.9%降至45.7%,去除率波动较大,说明水力负荷对水培蔬菜系统中TN的去除影响较大。  (3)TP去除效果  各系统TP的去除率情况如图4(a)所示。1号系统、2号系统与3号系统去除率随着水力负荷增加呈明显下降的趋势,2号潜流湿地系统去除率最大。当水力负荷由0.1 m3/(m2·d)增大到0.3 m3/(m2·d)时,1号系统去除率由78.9%下降至40.8%,下降幅度最大,这可能是因为在水培系统中,磷的去除主要是植物对磷素的吸收,水力负荷加大使停留时间缩短,植物对磷的吸收作用会明显减弱。而2号系统与3号系统中,随着水力负荷的增加,潜流湿地中填料对磷的吸附作用优势凸显,使TP去除率下降幅度小于水培蔬菜系统。对于4号系统,由于前段流入潜流湿地造成后段水培蔬菜系统中溶解氧的浓度过低,植物生长状况与根系微生物受到影响,系统对TP去除率始终较低,水力负荷为0.1 m3/(m2·d)时,4号系统对TP的去除率为53.7%,其他3种工艺系统对TP的去除率分别为84.2%、81.5%、78.9%。系统进水TP浓度为0.84~1.34 mg/L,水力负荷为0.1~0.3 m3/(m2·d)时,2号系统、3号系统、4号系统中出水TP浓度可以达一级A标准(GB 18918—2002),1号水培蔬菜系统在水力负荷0.3 m3/(m2·d)时,出水TP难以达到一级A标准。生物膜净化污水的机理(1)生物膜的构造特征生物膜(好氧层+兼氧层+厌氧层)+附着水层(高亲水性)。(2)降解有机物的机理①微生物:沿水流方向为细菌——原生动物――后生动物的食物链或生态系统。具体生物以菌胶团为主、辅以球衣菌、藻类等,含有大量固着型纤毛虫(钟虫、等枝虫、独缩虫等)和游泳型纤毛虫(楯纤虫、豆形虫、斜管虫等),它们起到了污染物净化和清除池内生物(防堵塞)作用。②污染物:重→轻(相当多污带→α中污带→β中污带→寡污带)。③供氧:借助流动水层厚薄变化以及气水逆向流动,向生物膜表面供氧。④传质与降解:有机物降解主要是在好氧层进行,部分难降解有机物经兼氧层和厌氧层分解,分解后产生的H2S,NH3等以及代谢产物由内向外传递而进入空气中,好氧层形成的NO3--N、NO2--N等经厌氧层发生反硝化,产生的N2也向外而散入大气中。⑤生物膜更新:经水力冲刷,使膜表面不断更新(DO及污染物),维持生物活性(老化膜固着不紧)。

网络回国

翻墙回国

Android翻墙加速器

翻墙回国软件